Skip to content

Modality Features: Structural MRI (sMRI)

Source Inputs

  • FreeSurfer / CIVET outputs path.
  • Atlas / parcellation used (e.g., Desikan, Schaefer-400 volumetric maps).
  • QC reports (Euler number thresholds, manual edits).

Feature Extraction

  • ROI metrics: cortical thickness, volume, surface area, subcortical volumes.
  • Derived composites (asymmetry indices, global measures) if needed.
  • File formats (.tsv, .csv, HDF5) and loader scripts.

Preprocessing & Harmonization

  • Z-score within train folds; residualize covariates (age, sex, ICV, site/scanner, SES).
  • Optionally apply ComBat or mixed-effects models; document rationale.
  • Handle missing ROIs (impute, drop subject, or add mask).

Embedding / Projection

  • Stack ROI vectors per subject; optionally reduce via PCA to 512-D (fit per train fold).
  • Alternative: use pretrained encoders (Brain Harmony hub tokens) when available; document pooling strategy.
  • Persist embeddings + scalers in artifacts/generated/embeddings/smri/.

Covariates

  • Minimum set: age, sex, intracranial volume, site/scanner, scanner software version.
  • Additional: handedness, SES, acquisition batch.

Integration Notes

  • Use same subject IDs as genomics/fMRI intersections; log any exclusions.
  • Provide YAML hooks for experiments: kb/datasets/<cohort>.yaml, configs/projectors/smri_pca512.yaml.
  • Mention reliability metrics (test-retest ICC if available).

References

  • Documentation for FreeSurfer pipeline version.
  • Papers motivating ROI selection / harmonization steps.